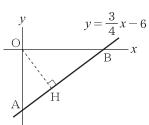

標準時間 15分 得点 / 100

三平方の定理の応用

下の図のように、長方形ABCDを、頂点Aが辺BCの中点Mと重なるように折ったとき、 BEの長さを求めなさい。 【ステップ 1】

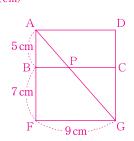

BE = x cm とすると、ME = AE = 6 - x (cm) \triangle BEMにおいて, $(6-x)^2 = x^2 + 4^2$

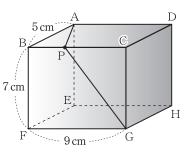
1 20点 $\frac{1}{3}$ cm

下の図のように,直線 $y=rac{3}{4}x-6$ のグラフがある。このとき,原点Oから直線にひい た垂線OHの長さを求めなさい。 ステップ [1]

$$A(0, -6)$$
, $B(8, 0)$ より,
$$AB = \sqrt{(8-0)^2 + \{0 - (-6)\}^2} = 10$$
 \triangle OABの面積は、 $\frac{1}{2} \times$ OA \times OB $= \frac{1}{2} \times 6 \times 8 = 24$ また、 \triangle OAB $= \frac{1}{2} \times AB \times OH$ より、 $\frac{1}{2} \times 10 \times OH = 24$ これを解いて、 $OH = \frac{24}{5}$

20点 24 5


下の図のような直方体の辺BC上に、AP+PGが最短になるような点Pをとるとき、次 の長さを求めなさい。 ステップ 2


 \bigcirc AP + PG

AB + BF =
$$5 + 7 = 12$$
 (cm) & 0,
AP + PG = $\sqrt{12^2 + 9^2} = 15$ (cm)

② BP

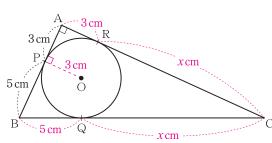
BP : FG = 5 : 12 & 0, BP:9=5:12を解いて、

3 15点×2 1 $15 \, \mathrm{cm}$ $\frac{15}{}$ cm 2

3cm

 $17\,\mathrm{cm}$

15点×2


4

(1)

2

下の図のように、円Oが直角三角形ABC上の3点P,Q,Rで内接している。このとき、次 の長さを求めなさい。 【ステップ 3

① 円〇の半径

② BC

QC = x cm とすると、三平方の定理より、 $8^2 + (x+3)^2 = (x+5)^2$, これを解いて、x=12よって、BC = BQ + QC

=5+12

= 17 (cm)