6B

式の計算の利用

乗法公式や因数分解を利用して、次の計算をしなさい。

$$3 \quad 102^2 \\ = (100 + 2)^2$$

①
$$(x+4)^2 - (x+8)(x+2)$$

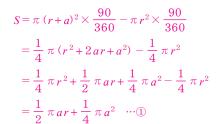
= $x^2 + 8x + 16 - (x^2 + 10x + 16)$
= $x^2 + 8x + 16 - x^2 - 10x - 16$
= $-2x$
= -2×6

次の問いに答えなさい。 ステップ 2

①
$$x-y=4$$
, $xy=-6$ のとき, x^2+y^2 の値を求めなさい。
= $(x-y)^2+2xy$
= $4^2+2\times(-6)$

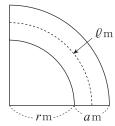
②
$$x+y=6$$
, $xy=7$ のとき, x^2-xy+y^2 の値を求めなさい。
= $(x+y)^2-3xy$
= $6^2-3\times7$

連続する3つの整数の、最大の整数と最小の整数の積に1を加えた数は、中央の整数の平 方に等しいことを証明しなさい。 ステップ 3


nを整数とすると,

連続する3つの整数はn-1, n, n+1と表せる。

$$(n+1)(n-1)+1=n^2-1+1=n^2$$


よって、連続する3つの整数の、最大の整数と最小の整数の積に1を加えた数は、中央の整数の平方に等し

半径rm, 中心角90°のおうぎ形の土地の外側に, 右の図の ような幅amの道がある。この道の面積をSm², 道の真ん中 を通る弧の長さを ℓ m とするとき, $S = a\ell$ となることを証明 しなさい。

また, 道の真ん中を通るおうぎ形の半径は,

 $\left(r+\frac{a}{2}\right)$ mであるから,

$$\ell = 2 \pi \left(r + \frac{a}{2} \right) \times \frac{90}{360}$$

$$= \frac{1}{2} \pi r + \frac{1}{4} \pi a$$

$$\sharp \supset \tau, \quad a\ell = a \left(\frac{1}{2} \pi r + \frac{1}{4} \pi a \right)$$

$$= \frac{1}{2} \pi a r + \frac{1}{4} \pi a^2 \quad \cdots ②$$

$$0, \quad \varnothing \sharp 0, \quad S = a\ell$$

1		5点×4
1	600	
2	3596	
3	10404	
4	6241	

2		10点×
1	-12	
2	64	

3		10点×2
1	4	
2	15	

4		20点
	左の証明参照。	

